Abstract
BackgroundWhile Salmonella serotyping is of paramount importance for the disease intervention of salmonellosis, a fast and easy-to-operate molecular serotyping solution remains elusive. We have developed a multiplex ligation reaction based on probe melting curve analysis (MLMA) for the identification of 30 common Salmonella serovars.MethodsSerovar-specific primers and probes were designed based on a comparison of gene targets (wzx and wzy encoding for somatic antigen biosynthesis; fliC and fljB for flagellar antigens) from 5868 Salmonella genomes. The ssaR gene, a type III secretion system component, was included for the confirmation of Salmonella.ResultsAll gene targets were detected and gave expected Tm values during assay evaluation. Cross reactions were not demonstrated between the 30 serovars (n = 211), or with an additional 120 serovars (n = 120) and other Enterobacteriaceae (n = 3). The limit of identification for all targets ranged from using 1.2 ng/μL to 1.56 ng/μL of DNA. The intra- and inter-assay standard deviations and the coefficients of variation were no more than 0.5 °C and less than 1% respectively, indicating high reproducibility. From consecutive outpatient stool samples (n = 3590) collected over a 10-month period at 11 sentinel hospitals in Shenzhen, China, we conducted a multicenter study using the traditional Salmonella identification workflow and the MLMA assay workflow in parallel. From Salmonella isolates (n = 496, 13.8%) derived by both workflows, total agreement (kappa = 1.0) between the MLMA assay and conventional serotyping was demonstrated.ConclusionsWith an assay time of 2.5 h, this simple assay has shown promising potential to provide rapid and high-throughput identification of Salmonella serovars for clinical and public health laboratories to facilitate timely surveillance of salmonellosis.
Highlights
While Salmonella serotyping is of paramount importance for the disease intervention of salmonellosis, a fast and easy-to-operate molecular serotyping solution remains elusive
Based on the principles of MLMA, we developed an assay to identify 30 clinically most common Salmonella serovars over a 10-year period (2006–2016) in Shenzhen, China
Development of the MLMA assay for the detection of antigen genes A two-tube system, each with three fluorescence channels (ROX, carboxy fluorescein (FAM) and Cy5) was developed (Table 2)
Summary
While Salmonella serotyping is of paramount importance for the disease intervention of salmonellosis, a fast and easy-to-operate molecular serotyping solution remains elusive. We have developed a multiplex ligation reaction based on probe melting curve analysis (MLMA) for the identification of 30 common Salmonella serovars. Salmonella is a leading cause of foodborne illness and represents a major public health burden globally. 93.8 million cases of gastroenteritis and 155,000 deaths were estimated to be caused by Salmonella species annually worldwide [1]. In China, Salmonella have been the most prevalent bacterial foodborne pathogen among diarrheal patients [2]. According to our sentinel surveillance data for infectious diarrhea, the infection rate of Salmonella has surpassed Vibrio parahaemolyticus and has become the primary cause of foodborne illnesses in Shenzhen. 2659 Salmonella serovars have been described on the basis of a combination of 46 somatic (O) antigens and 114 flagellar (H) antigens [3, 4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of Clinical Microbiology and Antimicrobials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.