Abstract

Introduction/ObjectiveThe majority of tracking methods have employed whole genome sequencing, which can be very expensive and time consuming. An alternative method has been to use genotyping of specific mutations to identify variants. However, tracking SARS-CoV-2 variants by targeted methods has been a moving target. Most methods only multiplex four targets per reaction, but we have multiplexed 8 targets in a single tube using fragment analysis.Methods/Case ReportFluorescently labeled primers targeted a combination of insertion/ deletion mutations and single nucleotide mutations. The PCR amplified products, amplicons, were separated by capillary electrophoresis. Primers were designed to detect changes in size indicative of insertion or deletion mutations including: ORF1A:Del3675_3677, S:Del69_70, S:Del144, S:Del157_158, S:Del242_244, ORF8:Del119_120, and ORF8:ins28269-28273. Allele-specific primers were designed to detect both the wild-type and mutated versions of S:N501Y, S:E484K, and S:L452R.Residual nasopharyngeal and nasal specimens testing positive for SARS-CoV-2 by RT-PCR or isothermal amplification (IDnow) methods were selected from May 1- June 24, 2021. Variant analysis was performed by multiplex targeted PCR and whole genome sequencing in parallel on the same specimens to determine positive percent agreement.Results (if a Case Study enter NA)Variant analysis was performed on 250 specimens detecting each of the major variants of concern Alpha (B.1.1.7, U.K. origin, n= 108), Beta (B.1.351, South Africa origin, n=3), Gamma (P.1, Brazil origin, n=12), Delta (B.1.617.2, Indian origin, n=17), and Iota (B.1.526, New York, n=5). Some specimens with low viral load were detected by only PCR (n=18), only WGS (n=41), or neither (n=20). Overall positive percent agreement was 95% (163/171).ConclusionThis adjustable method robustly and accurately identifies COVID-19 VOCs utilizing a platform amenable to multiple targets (20-40 targets ranging from 100-500b.p. across four fluorescent channels) using equipment commonly found in routine molecular pathology laboratories. Future directions include adjusting targets to detect new variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.