Abstract

The aim of this study was to conduct a comprehensive analysis of the placement of multiple wearable sensors for the purpose of analyzing and classifying the gaits of patients with neurological disorders. Seven inertial measurement unit (IMU) sensors were placed at seven locations: the lower back (L5) and both sides of the thigh, distal tibia (shank), and foot. The 20 subjects selected to participate in this study were separated into two groups: stroke patients (11) and patients with neurological disorders other than stroke (brain concussion, spinal injury, or brain hemorrhage) (9). The temporal parameters of gait were calculated using a wearable device, and various features and sensor configurations were examined to establish the ideal accuracy for classifying different groups. A comparison of the various methods and features for classifying the three groups revealed that a combination of time domain and gait temporal feature-based classification with the Multilayer Perceptron (MLP) algorithm outperformed the other methods of feature-based classification. The classification results of different sensor placements revealed that the sensor placed on the shank achieved higher accuracy than the other sensor placements (L5, foot, and thigh). The placement-based classification of the shank sensor achieved 89.13% testing accuracy with the Decision Tree (DT) classifier algorithm. The results of this study indicate that the wearable IMU device is capable of differentiating between the gait patterns of healthy patients, patients with stroke, and patients with other neurological disorders. Moreover, the most favorable results were reported for the classification that used the combination of time domain and gait temporal features as the model input and the shank location for sensor placement.

Highlights

  • Wearable devices, such as accelerometers, gyroscopes, or a combination of the two to form inertial measurement unit (IMU) sensors, have been widely used in gait analysis and the monitoring of physical activity

  • Time domain features were extracted from the normalized segmented data for the triaxial accelerometer and gyroscope at the seven sensor locations

  • This study aimed to perform a comprehensive analysis of multiple placements of wearable sensors for gait analysis and classification in patients with neurological disorders

Read more

Summary

Introduction

Wearable devices, such as accelerometers, gyroscopes, or a combination of the two to form inertial measurement unit (IMU) sensors, have been widely used in gait analysis and the monitoring of physical activity. The validation of algorithms and sensor configurations has been performed in some studies, including the validation of gait event detection in systems such as the motion capture system, force platform, and gait mat system by using the golden standard [1,2,3,4,5]. Spatiotemporal gait parameters including step time, step length, step velocity, stride time, variability, and asymmetry were calculated and compared with the result from the gait mat. Their result showed that the sensor arrangement and algorithm were valid and reliable for quantifying gait during continuous walking in both younger and older adults. Their study found an excellent agreement for mean step time, stance time, step length, and step velocity for the older adults group, while for PD groups, agreement was found for step time, stance time, and step velocity

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call