Abstract
The multi-terminal Josephson effect allows DC supercurrent to flow at finite commensurate voltages. Existing proposals to realize this effect rely on nonlocal Andreev processes in superconductor-normal-superconductor junctions. However, this approach requires precise control over microscopic states and is obscured by dissipative current. We show that standard tunnel Josephson circuits also support multiplet supercurrent mediated only by local tunneling processes. Furthermore, we observe that the supercurrents persist even in the high charging energy regime in which only sequential Cooper transfers are allowed. Finally, we demonstrate that the multiplet supercurrent in these circuits has a quantum geometric component that is distinguishable from the well-known adiabatic contribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.