Abstract

In this paper, a multiple-symbol parallel variable length decoding (VLD) scheme is introduced. The scheme is capable of decoding all the codewords in an N-bit block of encoded input data stream. The proposed method partially breaks the recursive dependency related to the VLD. First, all possible codewords in the block are detected in parallel and lengths are returned. The procedure results redundant number of codeword lengths from which incorrect values are removed by recursive selection. Next, the index for each symbol corresponding the detected codeword is generated from the length determining the page and the partial codeword defining the offset in symbol table. The symbol lookup can be performed independently from symbol table. Finally, the sum of the valid codeword lengths is provided to an external shifter aligning the encoded input stream for a new decoding cycle. In order to prove feasibility and determine the limiting factors of our proposal, the variable length decoder has been implemented on an field-programmable gate-array (FPGA) technology. When applied to MPEG-2 standard benchmark scenes, on average 4.8 codewords are decoded per cycle resulting in the throughput of 106 million symbols per second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.