Abstract

This paper investigates the use of multiple-pass trajectories for aeroassisted orbital transfer vehicles (AOTV) as a means of reducing the severe aeroheating environment and the extreme sensitivity to off-nominal trajectory and atmospheric conditions. One-, two-, and three-pass trajectories were calculated for AOTV's with ballistic coefficients ranging from 5 to 150 psf. Compared to the single-pass case, the maximum heat rate was reduced by 30 percent for two passes and 45 percent for three passes, while the maximum acceleration was reduced by 40 percent and 55 percent, respectively. The sensitivity of the trajectories to variations in atmospheric and orbital parameters was not significantly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.