Abstract
Student evaluation is an essential part of education and is usually done through examinations. These examinations generally use tests consisting of several questions as crucial factors to determine the quality of the students. Test-making can be thought of as a multi-constraint optimization problem. However, the test-making process that is done by either manually or randomly picking questions from question banks still consumes much time and effort. Besides, the quality of the tests generated is usually not good enough. The tests may not entirely satisfy the given multiple constraints such as required test durations, number of questions, and question difficulties. In this paper, we propose parallel strategies, in which parallel migration is based on Pareto optimums, and applyan improved genetic algorithm called a genetic algorithm combined with simulated annealing, GASA, which improves diversity and accuracy of the individuals by encoding schemes and a new mutation operator of GA to handle the multiple objectives while generating multiple choice-tests from a large question bank. The proposed algorithms can use the ability to exploit historical information structure in the discovered tests, and use this to construct desired tests later. Experimental results show that the proposed approaches are efficient and effective in generating valuable tests that satisfy specified requirements. In addition, the results, when compared with those from traditional genetic algorithms, are improved in several criteria including execution time, search speed, accuracy, solution diversity, and algorithm stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.