Abstract

We performed multiple-breath washouts of N2 and simultaneous washins of He and SF6 with fixed tidal volume (approximately 1,250 ml) and preinspiratory lung volume (approximately the subject's functional residual capacity in the standing position) in four normal subjects (mean age 40 yr) standing and supine in normal gravity (1 G) and during exposure to sustained microgravity (microG). The primary objective was to examine the influence of diffusive processes on the residual, nongravitational ventilatory inhomogeneity in the lung in microG. We calculated several indexes of convective ventilatory inhomogeneity from each gas species. A normal degree of ventilatory inhomogeneity was seen in the standing position at 1 G that was largely unaltered in the supine position. When we compared the standing position in 1 G with microG, there were reductions in phase III slope in all gases, consistent with a reduction in convection-dependent inhomogeneity in the lung in microG, although considerable convective inhomogeneity persisted in microG. The reductions in the indexes of convection-dependent inhomogeneity were greater for He than for SF6, suggesting that the distances between remaining nonuniformly ventilated compartments in microG were short enough for diffusion of He to be an effective mechanism to reduce gas concentration differences between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.