Abstract
This paper describes a novel approach for the speaker adaptation of statistical parametric speech synthesis systems based on the interpolation of a set of average voice models (AVM). Recent results have shown that the quality/naturalness of adapted voices depends on the distance from the average voice model used for speaker adaptation. This suggests the use of several AVMs trained on carefully chosen speaker clusters from which a more suitable AVM can be selected/interpolated during the adaptation. In the proposed approach a set of AVMs, a multiple-AVM, is trained on distinct clusters of speakers which are iteratively re-assigned during the estimation process initialised according to metadata. During adaptation, each AVM from the multiple-AVM is first adapted towards the target speaker. The adapted means from the AVMs are then interpolated to yield the final speaker adapted mean for synthesis. It is shown, performing speaker adaptation on a corpus of British speakers with various regional accents, that the quality/naturalness of synthetic speech of adapted voices is significantly higher than when considering a single factor-independent AVM selected according to the target speaker characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.