Abstract

AbstractVibrationally excited 2‐methylhexyl radicals formed by shock wave activation or by chemical activation can isomerize by multiple pathways to form any of six stable isomers, can fragment by multiple CH and CC bond fission pathways, and can be collisionally stabilized. Master equation simulations of chemical activation and of shock wave activation are used to explore the generic behavior of this complicated coupled system. Selecting the argon pressure in chemical activation systems that produce the 2‐methyl‐1‐hexyl radical isomer (1) can control the yield of specific isomers. Shock heating of 1 also shows a highly regular sequence of isomer formation. This regular behavior is because the first isomerization steps are faster than subsequent steps. Other radical isomers, such as 2‐methyl‐3‐hexyl (3), do not show such regular behavior, because the first isomerization step is slower than subsequent steps. Incubation and unimolecular rate‐constant fall‐off are observed in the shock wave simulations. The unimolecular rate‐constant fall‐off for the coupled system produces low‐pressure limiting rate constants proportional to [M]n, where n can be greater than unity. The fact that n can be greater than unity is a natural feature of multichannel coupled unimolecular reaction systems, but detection of the effect in experiments may be very demanding. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 246–261, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.