Abstract

We propose a new image denoising algorithm that exploits an image's representation in multiple wavelet domains. Besov balls are convex sets of images whose Besov norms are bounded from above by their radii. Projecting an image onto a Besov ball of proper radius corresponds to a type of wavelet shrinkage for image denoising. By defining Besov balls in multiple wavelet domains and projecting onto their intersection using the projection onto convex sets (POCS) algorithm, we obtain an estimate that effectively combines estimates from multiple wavelet domains. While simple, the algorithm provides significant improvement over conventional wavelet shrinkage algorithms based on a single wavelet domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.