Abstract

Optical measurement techniques offer great opportunities in diverse applications, such as lathe monitoring and microfluidics. Doppler-based interferometric techniques enable simultaneous measurement of the lateral velocity and axial distance of a moving object. However, there is a complementarity between the unambiguous axial measurement range and the uncertainty of the distance. Therefore, we present an extended sensor setup, which provides an unambiguous axial measurement range of 1 mm while achieving uncertainties below 100 nm. Measurements at a calibration system are performed. When using a pinhole for emulating a single scattering particle, the tumbling motion of the rotating object is resolved with a distance uncertainty of 50 nm. For measurements at the rough surface, the distance uncertainty amounts to 280 nm due to a lower signal-to-noise ratio. Both experimental results are close to the respective Cramér–Rao bound, which is derived analytically for both surface and single particle measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call