Abstract

This study proposes a novel, composite time-frequency distribution (TFD) constructed using a multiple-view approach. This composite TFD utilises the intrinsic mode functions (IMFs) of the empirical mode decomposition (EMD) to generate each view that are then combined using the arithmetic mean. This process has the potential to eliminate the inter-component interference generated by a quadratic TFD (QTFD), as the IMFs of the EMD are, in general, monocomponent signals. The formulation of the multiple-view TFD in the ambiguity domain results in faster computation, compared to a convolutive implementation in the time-frequency domain, and a more robust TFD in the presence of noise. The composite TFD, referred to as the EMD-TFD, was shown to generate a heuristically more accurate representation of the distribution of time-frequency energy in a signal. It was also shown to have performance comparable to the Wigner-Ville distribution when estimating the instantaneous frequency of multiple signal components in the presence of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.