Abstract

MnTe has been considered a promising candidate for lead-free mid-temperature range thermoelectric clean energy conversions. However, the widespread use of this technology is constrained by the relatively low-cost performance of materials. Developing environmentally friendly thermoelectrics with high performance and earth-abundant elements is thus an urgent task. MnTe is a candidate, yet a peak ZT of 1.4 achieved so far is less satisfactory. Here, a remarkably high ZT of 1.6 at 873 K in MnTe system is realized by facilitating multiple valence band convergence and localized lattice engineering. It is demonstrated that SbGe incorporation promotes the convergence of multiple electronic valence bands in MnTe. Simultaneously, the carrier concentration can be optimized by SbGeS alloying, which significantly enhances the power factor. Simultaneously, MnS nanorods combined with dislocations and lattice distortions lead to strong phonon scattering, resulting in a markedly low lattice thermal conductivity(κlat ) of 0.54Wm K-1 , quite close to the amorphous limit. As a consequence, extraordinary thermoelectric performance is achieved by decoupling electron and phonon transport. The vast increase in ZT promotes MnTe as an emerging Pb-free thermoelectric compound for a wide range of applications in waste heat recovery and power generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.