Abstract

AbstractSince the Cenozoic, the Tibetan Plateau has experienced large‐scale uplift and outgrowth due to the India‐Asia collision. However, the mechanism and timing of these tectonic processes still remain debated. Here, using apatite fission track dating and inverse thermal modeling, we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau. In contrast to previous views, we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites, indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times. In addition, we also suggest that the 5‐2 Ma mantle‐related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau, because it led to the increase in atmospheric CO2 level and a hotter upper crust than before, which are efficient for suddenly fast rock weathering and erosion. Finally, we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call