Abstract
Unmanned Aerial Vehicles (UAVs) have garnered widespread attention in reconnaissance and search operations due to their low cost and high flexibility. However, when multiple UAVs (multi-UAV) collaborate on these tasks, a limited communication range can restrict their efficiency. This paper investigates the problem of multi-UAV collaborative reconnaissance and search for static targets with a limited communication range (MCRS-LCR). To address communication limitations, we designed a communication and information fusion model based on belief maps and modeled MCRS-LCR as a multi-objective optimization problem. We further reformulated this problem as a decentralized partially observable Markov decision process (Dec-POMDP). We introduced episodic memory into the reinforcement learning framework, proposing the CNN-Semantic Episodic Memory Utilization (CNN-SEMU) algorithm. Specifically, CNN-SEMU uses an encoder–decoder structure with a CNN to learn state embedding patterns influenced by the highest returns. It extracts semantic features from the high-dimensional map state space to construct a smoother memory embedding space, ultimately enhancing reinforcement learning performance by recalling the highest returns of historical states. Extensive simulation experiments demonstrate that in reconnaissance and search tasks of various scales, CNN-SEMU surpasses state-of-the-art multi-agent reinforcement learning methods in episodic rewards, search efficiency, and collision frequency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.