Abstract

(1) Whole-cell and single channel recording techniques have been applied to smooth muscle cells isolated from guinea-pig taenia coli to examine whether multiple types of Ca channels exist. (2) Whole-cell recordings under physiological Ca concentration (1.8 mM) revealed two current components with fast and slow inactivating kinetics. The fast inactivating component was present when cells were held at very negative potentials (-80 mV). It was insensitive to the dihydropyridine (DHP) derivative, nifedipine. In contrast, the slow inactivating component was present at less negative holding potentials. It was blocked by nifedipine. (3) The two current components were found to have closely similar voltage dependencies for activation. (4) These results suggest that the fast inactivating decay of the Ca current was mediated not only by the entry of Ca into the cell but also by a voltage-dependent process via a different type of Ca channel with fast inactivating kinetics. (5) Recordings from cell-attached membrane patches with 100 mM external Ba clearly showed the existence of multiple types of Ca channels with different conductances. (6) The large conductance channels (30 pS) activated at more positive potentials (0 mV) and their averaged current decayed much more slowly. The DHP Ca antagonist, nifedipine, inhibited the large conductance channels increasing the proportion of blank sweeps and reducing the averaged current. On the other hand, the DHP Ca-agonist, BayK 8644, increased the average current by increasing the mean open-times of the large conductance channels. The presence of micromolar Cd in the patch pipettes produced a flickering block of the large conductance channels.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.