Abstract

Recent studies suggested that a Ca(2+) signal is involved in the regulation of cell division. For example, using a confocal imaging technique, we have shown that a localized Ca(2+) elevation was clearly associated with the onset of cytokinesis in zebrafish embryo [Chang and Meng (1995) J. Cell Biol. 131:1539-1545]. This finding was later confirmed in studies using aequorin as a Ca(2+) probe. Here, we used a 4-D confocal measurement technique to further characterize the properties of the Ca(2+) signal associated with cell division. We found evidence that there were three types of Ca(2+) signals associated with different stages of cell cleavage in embryonic cell. The first type was repetitive Ca(2+) spikes that emerged several minutes before the first cell cleavage began. These Ca(2+) spikes were first distributed broadly over the central region of the blastodisc and then gradually localized in the equatorial region; they appeared to play the role of determining the position of the first cleavage plane. The second type was a calcium wave that propagated along the cleavage furrow and appeared to guide the furrow extension during the progression of cytokinesis. The third type was a group of post-cleavage calcium spikes that appeared to be responsible for furrow deepening and maintenance of the contractile band. When this type of Ca(2+) transient was blocked by injecting BAPTA or heparin, cell cleavage regressed and the structure of the contractile band could no longer be maintained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call