Abstract

A saxophone mouthpiece fitted with sensors is used to observe the oscillation of a saxophone reed, as well as the internal acoustic pressure, allowing to identify qualitatively different oscillating regimes. In addition to the standard two-step regime, where the reed channel successively opens and closes once during an oscillation cycle, the experimental results show regimes featuring two closures of the reed channel per cycle, as well as inverted regimes, where the reed closure episode is longer than the open episode. These regimes are well-known on bowed string instruments and some were already described on the Uilleann pipes. A simple saxophone model using measured input impedance is studied with the harmonic balance method, and is shown to reproduce the same two-step regimes. The experiment shows qualitative agreement with the simulation: in both cases, the various regimes appear in the same order as the blowing pressure is increased. Similar results are obtained with other values of the reed opening control parameter, as well as another fingering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.