Abstract

Magnetic skyrmions are topologically protected spin configurations and have recently received growingly attention in magnetic materials. The existence of biskyrmions within a broad temperature range has been identified in our newly-discovered MnNiGa material, promising for potential application in physics and technological study. Here, the biskyrmion microscopic origination from the spin configuration evolution of stripe ground state is experimentally identified. The biskyrmion manipulations based on the influences of the basic microstructures and external factors such as grain boundary confinement, sample thickness, electric current, magnetic field and temperature have been systematically studied by using real-space Lorentz transmission electron microscopy. These multiple tuning options help to understand the essential properties of MnNiGa and predict a significant step forward for the realization of skyrmion-based spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.