Abstract
When multiple treatments are analyzed together with a covariate, a treatment-covariate interaction complicates the interpretation of the treatment effects. The construction of simultaneous confidence bands for differences of the treatment specific regression lines is one option to proceed. The application of these methods is difficult because they are described as a collection of special cases and the implementation requires additional programming or relies on non-standard or proprietary software. If inferential interest can be restricted to a pre-specified set of covariate values, a flexible alternative is to compute simultaneous confidence intervals for multiple contrasts of the treatment effects over this grid. This approach is available in the R software: next to treatment differences in the linear model, approximate simultaneous confidence intervals for ratios of expected values and asymptotic extensions to generalized linear models are straightforward. The paper summarizes the available methodology and presents three case studies to illustrate the application to different models, differences and ratios, as well as different types of between treatment comparisons. Simulation studies in the general linear model, for different parameters and different types of comparisons are provided. The R code to reproduce the case studies and a hint to a related R package is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.