Abstract

In this paper, we propose a new mathematical model to investigate nosocomial infections caused by both antibiotic-sensitive and antibiotic-resistant bacteria. A focus of our modeling study is the presence of multiple transmission pathways, including the primary infection, co-infection, and re-infection from each type of bacteria, and their interplay with each other in the process of disease spread. We calibrate this model to clinical data and quantify the effects of each transmission route in the epidemic development and evolution. Our data fitting and numerical simulation results indicate that resistant bacteria play a more significant role than sensitive bacteria in shaping the hospital epidemics in our study, highlighting the importance of effective prevention and intervention strategies for antibiotic-resistant bacteria. We also find that the primary infection and re-infection have a larger impact than the co-infection on the short-term and long-term progression of the epidemics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.