Abstract

Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. Although an inhibitory central nervous system environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (ATF3), sex determining region Ybox containing gene 11 (Sox11), nuclear factor κ-light chain enhancer of activated B cells (NFκB), and Krüppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.