Abstract
BackgroundThe application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data. Several key traits determine the value of wool and influence a sheep’s susceptibility to fleece rot and fly strike. Our aim was to predict genomic estimated breeding values (GEBV) and to compare three methods of combining information across traits to map polymorphisms that affect these traits.MethodsGEBV for 5726 Merino and Merino crossbred sheep were calculated using BayesR and genomic best linear unbiased prediction (GBLUP) with real and imputed 510,174 SNPs for 22 traits (at yearling and adult ages) including wool production and quality, and breech conformation traits that are associated with susceptibility to fly strike. Accuracies of these GEBV were assessed using fivefold cross-validation. We also devised and compared three approximate multi-trait analyses to map pleiotropic quantitative trait loci (QTL): a multi-trait genome-wide association study and two multi-trait methods that use the output from BayesR analyses. One BayesR method used local GEBV for each trait, while the other used the posterior probabilities that a SNP had an effect on each trait.ResultsBayesR and GBLUP resulted in similar average GEBV accuracies across traits (~0.22). BayesR accuracies were highest for wool yield and fibre diameter (>0.40) and lowest for skin quality and dag score (<0.10). Generally, accuracy was higher for traits with larger reference populations and higher heritability. In total, the three multi-trait analyses identified 206 putative QTL, of which 20 were common to the three analyses. The two BayesR multi-trait approaches mapped QTL in a more defined manner than the multi-trait GWAS. We identified genes with known effects on hair growth (i.e. FGF5, STAT3, KRT86, and ALX4) near SNPs with pleiotropic effects on wool traits.ConclusionsThe mean accuracy of genomic prediction across wool traits was around 0.22. The three multi-trait analyses identified 206 putative QTL across the ovine genome. Detailed phenotypic information helped to identify likely candidate genes.
Highlights
The application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data
BayesR and genomic best linear unbiased prediction (GBLUP) resulted in similar genomic estimated breeding values (GEBV) accuracies but BayesR resulted in higher accuracy for traits (GFW, YLD, staple length (SL), staple strength (SS), fibre diameter (FD), FD coefficient of variation (FDCV), and CURV) for which there was a large number of significant SNPs in the Genome-wide association studies (GWAS)
We found that the LCORL SNP identified in our study is located 29 kb from the LCORL SNP that was detected in a multi-trait GWAS across carcass and growth traits [14]
Summary
The application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data. Several key traits determine the value of wool and influence a sheep’s susceptibility to fleece rot and fly strike. Merino sheep are traditionally bred for wool. The value of a sheep’s fleece depends on many characteristics including fleece weight, fibre diameter, staple strength and length, crimp (or curvature), wool color, and dust penetration [1]. Estimated heritabilities and correlations for wool traits in Merino sheep are reported in the literature [5, 6]. Genetic correlations between many wool traits including greasy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.