Abstract
Functional materials that exhibit photoinduced structural phase transitions are highly interesting for applications in optomechanics and mechanochemistry. It is, however, still not fully understood how photochemical reactions, which are often accompanied by molecular motion, proceed in confined and crystalline environments. Here we show that thin films of azobenzene trimers exhibit high structural order and determine the crystallographic unit cell. We demonstrate that thin film can be switched partially reversibly between a crystalline and an amorphous phase. The time constant of the photoinduced amorphisation as measured with real-time x-ray diffraction (220 s) lies between the two time constants (120 s and 2870 s) of the ensemble photoisomerisation processes that are measured via optical spectroscopy. Our observation of a photoinduced shrinking of the crystalline domains indicates a cascading process, in which photoisomerisation starts at the surface of the thin film and propagates deeper into the crystalline layer by introducing disorder and generating free volume. This finding is important for the rapidly evolving research field of photoresponsive thin films and smart crystalline materials in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.