Abstract
The dynamic properties of the dipolar magnet CsGd(MoO4)2 have been studied. The frequency and temperature dependence of the AC susceptibility investigated in the paramagnetic region above 2 K revealed the co-existence of magnetic field induced slow and fast relaxation channels with a timescale differing by three orders of magnitude. The slow relaxation is determined by the properties of the first coordination sphere of the Gd3+ ion and has the character of a two-phonon Orbach process. The fast relaxation is potentially attributed to a two-phonon Raman process realized via a localized phonon mode associated with the layered crystal structure. The temperature dependence of the phonon mean free path in zero magnetic field indicates significant phonon scattering below 1 K resulting from the combined effect of magnetic correlations and the scattering of dominant phonons with energies corresponding to the crystal-field levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.