Abstract

We propose a sampling scheme to reduce the CPU time for Monte Carlo simulations of atomic systems. Our method is based on the separation of the potential energy into parts that are expected to vary at different rates as a function of coordinates. We perform n moves that are accepted or rejected according to the rapidly varying part of the potential, and the resulting configuration is accepted or rejected according to the slowly varying part. We test our method on a Lennard-Jones system. We show that use of our method leads to significant savings in CPU time. We also show that for moderate system sizes the scaling of CPU time with system size can be improved (for n=40 the scaling is predominantly linear up to 1000 particles).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.