Abstract

Monitoring health status requires collecting a large amount of data from the human body. The sensor can be used to collect data from the human body. The sensor transmits data for almost every second across the internet. The challenge of the health monitoring system is the massive amount of incoming data. Therefore, a system capable of sending, storing, analyzing, and visualizing vast amounts of data is required for health monitoring. A previous study proposed microservice and event-driven architecture. It also proposed a single database for all services and a relational database management system (RDBMS) for storing time series data, which might reduce the data transmission performance and reliability. This research intends to improve the monitoring system from the previous study to accommodate a greater throughput, faster database read and write operations, and a more reliable system design. The improvement consists of multiple changes in system architecture and technology. A multi-database is proposed in the system architecture to improve system reliability. Time series database and Message Queue Telemetry Protocol (MQTT) server are proposed as an upgrade on technology. As a result, the proposed system throughput is 2.43 times faster than the old system. On database performance, the new system's database write speed is 20.95 times faster and the database read speed is 1.64 times faster than the old system. The proposed system also achieves better scalability, resilience, and independence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.