Abstract

This paper addresses some issues involving the application of discontinuous Galerkin (DG) methods to ocean circulation models having a generalized vertical coordinate. These issues include the following. (1) Determine the pressure forcing at cell edges, where the dependent variables can be discontinuous. In principle, this could be accomplished by solving a Riemann problem for the full system, but some ideas related to barotropic–baroclinic time splitting can be used to reduce the Riemann problem to a much simpler system of lower dimension. Such splittings were originally developed in order to address the multiple time scales that are present in the system. (2) Adapt the general idea of barotropic–baroclinic splitting to a DG implementation. A significant step is enforcing consistency between the numerical solution of the layer equations and the numerical solution of the vertically-integrated barotropic equations. The method used here has the effect of introducing a type of time filtering into the forcing for the layer equations, which are solved with a long time step. (3) Test these ideas in a model problem involving geostrophic adjustment in a multi-layer fluid. In certain situations, the DG formulation can give significantly better results than those obtained with a standard finite difference formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.