Abstract

Multiple time-dependent coefficient identification thermal problems with an unknown free boundary are investigated. The difficulty in solving such inverse and ill-posed free boundary problems is amplified by the fact that several quantities of physical interest (conduction, convection/advection and reaction coefficients) have to be simultaneously identified. The additional measurements which render a unique solution are given by the heat moments of various orders together with a Stefan boundary condition on the unknown moving boundary. Existence and uniqueness theorems are provided. The nonlinear and ill-posed problems are numerically discretised using the finite-difference method and the resulting system of equations is solved numerically using the MATLAB toolbox routine lsqnonlin applied to minimizing the nonlinear Tikhonov regularization functional subject to simple physical bounds on the variables. Numerically obtained results from some typical test examples are presented and discussed in order to illustrate the efficiency of the computational methodology adopted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call