Abstract

Host nitric oxide (NO⋅) production is important for controlling intracellular bacterial pathogens, including Salmonella enterica serovar Typhimurium, but the underlying mechanisms are incompletely understood. S. Typhmurium 14028s is prototrophic for all amino acids but cannot synthesize methionine (M) or lysine (K) during nitrosative stress. Here, we show that NO⋅-induced MK auxotrophy results from reduced succinyl-CoA availability as a consequence of NO⋅ targeting of lipoamide-dependent lipoamide dehydrogenase (LpdA) activity. LpdA is an essential component of the pyruvate and α-ketoglutarate dehydrogenase complexes. Additional effects of NO⋅ on gene regulation prevent compensatory pathways of succinyl-CoA production. Microarray analysis indicates that over 50% of the transcriptional response of S. Typhimurium to nitrosative stress is attributable to LpdA inhibition. Bacterial methionine transport is essential for virulence in NO⋅-producing mice, demonstrating that NO⋅-induced MK auxotrophy occurs invivo. These observations underscore the importance of metabolic targets for antimicrobial actions of NO⋅.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.