Abstract
Considerable interest has arisen in the recent years utilizing inexpensive acoustic sensors in the battlefield to perform targets of interest identification and classification. They require no line of sight and provide many capabilities for target detection, bearing estimation, target tracking, classification and identification. In practice, however, many environment noise, time-varying, and uncertainties factors affect their performance in detecting targets of interest reliably and accurate. In this paper, we have proposed a novel feature extraction approach for robust classification and identification of moving target vehicles to reduce those factors. The approach is based on Low Rank Matrix Decomposition. Using Low Rank Matrix Decomposition, dominant features of vehicle acoustic signatures can be extracted appropriately with respect to vehicle operational responses and used for robust identification and classification of target vehicles. The performance of the proposed approach has been evaluated based on a set of experimental acoustic data from multiple vehicle test-runs. It is demonstrated that the approach yields verv promising results to reduce uncertainties associated with classification of target vehicles based on acoustic signatures at different operation speeds in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.