Abstract

Rational drug discovery strategy requires a design of small molecules as candidate drugs which can specifically inhibit a target protein or any other macromolecule and effectively interfere in a defined physiological process. One of the important bacterial protein targets aimed toward developing new antibiotics is peptidyl-tRNA hydrolase (Pth). The discovery that cytarabine, a known anticancer drug, binds to Pth from Acinetobacter baumannii in a cleft located away from the catalytic site of this enzyme, published in Biochemical Journal, opens up interesting new avenues for drug design. An approach involving crystallographic identification of multiple ligand-binding sites on a target protein surface could enable iterative optimization of multiple high-affinity ligands, which may synergistically interfere in the target function with enhanced effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.