Abstract

In this paper, a novel multiple target localization approach is proposed by exploiting the compressive sensing theory, which indicates that sparse or compressible signals can be recovered from far fewer samples than that needed by the Nyquist sampling theorem. We formulate the multiple target locations as a sparse matrix in the discrete spatial domain. The proposed algorithm uses the received signal strengths (RSSs) to find the location of targets. Instead of recording all RSSs over the spatial grid to construct a radio map from targets, far fewer numbers of RSS measurements are collected, and a data pre-processing procedure is introduced. Then, the target locations can be recovered from these noisy measurements, only through an ¿ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -minimization program. The proposed approach reduces the number of measurements in a logarithmic sense, while achieves a high level of localization accuracy. Analytical studies and simulations are provided to show the performance of the proposed approach on localization accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.