Abstract

Abstract The rat preprotachykinin I gene mRNA is alternatively spliced to yield three different mRNA species differing in their protein coding regions. We have produced recombinant vaccinia viruses expressing alpha-, beta-, and gamma-preprotachykinin to examine the tachykinin-related peptides produced upon post-translational processing of each individual precursor. Infection of BSC-40 or AtT-20 cell lines with a beta-preprotachykinin-encoding vaccinia virus recombinant results in the expression of the precursor protein. The pro-form (signal peptide removed) can be immunoprecipitated from extracts of infected cells. Infected cells of both types secrete into the culture medium a product(s) which reacts in radioimmunoassay with an antiserum shown to recognize precursor as well as mature substance P. Infected AtT-20, but not BSC-40, cells secrete into the culture medium a processed form(s) of beta-preprotachykinin which reacts in radioimmunoassay with an anti-serum which recognizes the amidated carboxyl terminus of substance P. The molecular nature of the tachykinin products produced in and secreted from AtT-20 cells infected with alpha-, beta-, and gamma-preprotachykinin-encoding recombinants was analyzed by combined high performance liquid chromatography and radioimmunoassay. Peptides were identified based on comigration with synthetic standards and antisera cross-reactivity. We determined that alpha-preprotachykinin is processed to the mature undecapeptide, substance P. beta-Preprotachykinin was processed into multiple products, including substance P, neurokinin A, neurokinin A(3-10), and neuropeptide K. gamma-Preprotachykinin was processed into substance P, neurokinin A, neurokinin A(3-10), and neuropeptide gamma. These five tachykinin peptide products were all routed through the regulated secretory pathway and were secreted into the medium in a cAMP-stimulatable fashion. Since all of these peptides have been shown to be biologically active, it is important to consider the biological consequences of their co-secretion in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call