Abstract

Piezoelectric materials are usually bonded to elastic substrates to form so-called smart material structures that are capable of sensing and actuating in a controlled manner in response to a stimulus. Such smart structures are often operated at transient electromechanical environments. In this paper, the problem of a periodic array of surface cracks in a piezoelectric layer bonded to an elastic substrate subjected to transient electromechanical loads is studied. A system of singular integral equations is formulated in terms of the crack surface displacement and electric potential. Numerical results include the time-dependent stress and electric displacement intensity factors. Effects of crack spacing and electromechanical coupling on the crack tip field intensity factors are investigated in details. Numerical examples are given for a single piezoelectric layer and a piezoelectric layer bonded to an elastic substrate, subjected to independent mechanical and electrical impact loads. Some useful conclusions are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.