Abstract

AbstractPrevious studies on multiple sulfur isotopes (32S, 33S, and 34S) in sedimentary pyrite at the end‐Permian suggested a shoaling of anoxic/sulfidic deep‐water contributing to the extinction. This scenario is based on an assumption that the sedimentary sulfur cycle was largely controlled by benthos activity, though a stratigraphic correlation between the sulfur records and ichnofabrics of the sediments at the end‐Permian has not yet been examined. We report the multiple sulfur isotopic composition of pyrite in the Permian–Triassic boundary interval at Chaotian, South China. Our data can be generally explained by a mixing of sulfur in sulfide from two different sources: one produced via sulfate reduction in an open system with respect to sulfate and the other produced in a closed system. In particular, the former with the substantially low δ34S (<−40 ‰) and high ∆33S (up to +0.100 ‰) values was likely produced via water‐mass sulfate reduction or via sulfate reduction in oxic sediments with common burrows. The frequent occurrence of small pyrite framboids (mostly <5 μm in diameter) in the Lopingian (Late Permian) Dalong Formation of deep‐water facies supports the enhanced water‐mass sulfate reduction in an anoxic deep‐water mass. The negative ∆33S values are observed only in the oxic limestones, and no substantial ∆33S change is observed across the extinction horizon despite of the disappearance of bioturbation. Our results are apparently inconsistent with the previous shoaling model. We expand the model and infer that, when the deep‐water was sulfidic and its shoaling rate was high, a substantial amount of hydrogen sulfide (H2S) was supplied onto the shelf via the shoaling; that resulted in the positive ∆33S value of the bulk sediments. The observed ∆33S variation on a global scale suggests a substantial variation in H2S concentration and/or in upwelling rate of shoaling deep‐waters during the Permian–Triassic transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.