Abstract

Different serotypes of coxsackievirus B (CVB), which is the most common cause of viral myocarditis, target cardiomyocytes through Coxsackie and Adenovirus Receptor and Decay-Accelerating Factor. Both receptors are expressed in the fetal heart. We hypothesized that infection with different serotypes of CVB during early pregnancy plays a role in pathogenesis of congenital heart defect (CHD). In this study, we use a murine model to infect with CVB1, CVB4, and combination of CVB3 + CVB4 during a critical period in gestation. We examined offspring of pregnant mice for fetal death and heart defects following viral infection. Fetuses from uninfected control dams showed normal heart development, while maternal CVB infection precipitates CHD: majorly ventricular septal defects (VSD) and non-compaction of ventricular myocardium (NC), with some infrequent cases of double outlet right ventricle, left ventricle wall rupture, right ventricle hypertrophy, and thickened/dysplastic semilunar valves. Infection of pregnant dams with CVB1 leads to 44% VSD and 41.2% NC cases, while with CVB4 leads to 31.7% VSD and 13.3% NC cases. Co-infection with CVB3 + CVB4 increases fetal pathology to 51.3% VSD and 41% NC cases. Infection can also result in fetal death, with higher incidences with CVB3 + CVB4 with 46.2% cases, compared to 33.3% by CVB1 and 21.7% by CVB4. Male fetuses were more susceptible to all phenotypes. Our report shows that prenatal CVB infections can lead to pathogenesis of certain heart defects in mouse model, particularly exacerbated with co-infections. This data confirms a link between prenatal CVB infection and CHD development and highlights it is not unique to just one serotype of CVB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call