Abstract
We propose a hierarchical infinite mixture model approach to address two issues in connectivity-based parcellations: (i) choosing the number of clusters, and (ii) combining data from different subjects. In a Bayesian setting, we model voxel-wise anatomical connectivity profiles as an infinite mixture of multivariate Gaussian distributions, with a Dirichlet process prior on the cluster parameters. This type of prior allows us to conveniently model the number of clusters and estimate its posterior distribution directly from the data. An important benefit of using Bayesian modelling is the extension to multiple subjects clustering via a hierarchical mixture of Dirichlet processes. Data from different subjects are used to infer on class parameters and the number of classes at individual and group level. Such a method accounts for inter-subject variability, while still benefiting from combining different subjects data to yield more robust estimates of the individual clusterings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.