Abstract
In many strike‐slip tectonic settings, large rotations of crustal blocks about vertical axes have been inferred from paleomagnetic data. These blocks are bounded by sets of parallel faults which presumably accommodate the relative motion between the blocks as regional deformation progresses. A mechanical model suggests that rotations greater than ϕc = 25° to 45° must be accommodated by more than one set of faults, with the angle ϕc between their directions, consequently the sum of the angles between sets must be roughly equal to the total tectonic material rotation. To test this model we investigated the fault geometry and field relationship of fault sets in the Mt. Hermon area in northern Israel, where paleomagnetic declination data imply 69°±13° counterclockwise (CCW) block rotation. The statistical and field relationship analysis of over 315 faults shows that the faulting is predominantly right lateral strike slip consisting of three distinct sets. The oldest set strikes 254°, the second oldest set strikes 295° and the youngest strikes 331°. This last direction is consistent also with the current north‐south direction of the maximum principal stress axis. The angle ϕc between the first and second sets is 41° and between the second and third sets 36°, in good agreement with the ϕc angle predicted from mechanical considerations. The sum of the two angles is 77°CCW, in good agreement with the 69°±13°CCW paleomagnetically derived rotation. The results suggest specifically that the sequential development of multiple intersecting fault sets is responsible for the faulting in the Mt. Hermon area and generally that the model of block rotation with multiple faults provides very good simple rules for analyzing very complex fault patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.