Abstract

Agricultural practices often result in multiple stressors affecting stream ecosystems, and interacting stressors complicate environmental assessment and management of impacted streams. The nitrification inhibitor dicyandiamide (DCD) is used for nitrogen management on farmland. Effects of leached DCD on stream ecosystems are still largely unstudied, even though it could be relevant as a stressor on its own or in combination with other agricultural stressors. We conducted two experiments in 128 outdoor stream-fed mesocosms to assess stressor effects on biomass, cell density, taxon richness, evenness and functional trait composition of benthic algal communities. First, we examined responses to a wide DCD gradient (eight concentrations, 0-31 mg L-1) and two additional stressors, deposited fine sediment (none, high) and nutrient enrichment (ambient, enriched). Second, we determined algal responses to four stressors: DCD, sediment, nutrients, and reduced flow velocity. Here DCD treatments included controls, constant application (1.4 mg L-1) and two pulsed treatments mimicking concentration patterns in real streams (peaks 3.5 mg L-1, 2.2 mg L-1). Sediment and nutrient enrichment were influential stressors in both experiments, with fine sediment having the most pervasive effects. In Experiment 2, reduced flow velocity had pervasive effects and stressor interactions were mainly restricted to two-way interactions. DCD had few, weak stressor main effects, especially at field-realistic concentrations (Experiment 2). At the highest concentrations in Experiment 1 (above levels observed in real streams), DCD effects were still rare but some significant stressor interactions occurred. Analyses of functional traits were helpful in identifying potential mechanisms driving changes in densities and community composition. These findings suggest that, while DCD on its own may be a minor stressor, it could have adverse effects on algal communities already exposed to other stressors, a scenario common in agricultural streams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.