Abstract

Leeches have a diverse constellation of peripheral neural elements that are challenged to extend growth cones in highly specific ways in a constantly changing embryonic environment. Two major systems are reviewed here. In one, peripheral afferents extend growth cones toward the central nervous system (CNS), forming common pathways, and then segregate into particular tracts within the CNS. A majority of these afferents depend on CNS-derived guidance cues and projections from the CNS to guide their way. However, not all of the nerves are established this way and at least one of the peripheral nerves is likely to be pioneered by sensillar sensory afferents. The distribution of particular antigens (such as the lan3-2 antigen) suggests the identity of molecules involved in homophilic adhesion along common pathways, whereas others (such as the lan4-2 and 3-6 antigens) are candidates for mediating specific pathway choices. In the second system, the myo-organizing Comb cell (C cell) projects multiple growth cones simultaneously along oblique trajectories not influenced by segmental or midline boundaries. Its parallel growth cones exhibit space-filling as well as directional growth and are guided by local cues to extend in discrete phases that are coordinated with the development of the environment. Both systems exhibit highly directed outgrowth orchestrated by a hierarchy of cues, establish patterns of neurites used to direct later migrating cells, and seem to be regulated temporally and spatially by interactions with the embryonic environment. These systems illustrate the strengths of examining neural development in vivo across several levels of analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call