Abstract

BackgroundWhole genome amplification (WGA) methods allow diagnostic laboratories to overcome the common problem of insufficient DNA in patient specimens. Further, body fluid samples useful for cancer early detection are often difficult to amplify with traditional PCR methods. In this first application of WGA on the entire human mitochondrial genome, we compared the accuracy of mitochondrial DNA (mtDNA) sequence analysis after WGA to that performed without genome amplification. We applied the method to a small group of cancer cases and controls and demonstrated that WGA is capable of increasing the yield of starting DNA material with identical genetic sequence.MethodsDNA was isolated from clinical samples and sent to NIST. Samples were amplified by PCR and those with no visible amplification were re-amplified using the Multiple Displacement Amplificaiton technique of whole genome amplification. All samples were analyzed by mitochip for mitochondrial DNA sequence to compare sequence concordance of the WGA samples with respect to native DNA. Real-Time PCR analysis was conducted to determine the level of WGA amplification for both nuclear and mtDNA.ResultsIn total, 19 samples were compared and the concordance rate between WGA and native mtDNA sequences was 99.995%. All of the cancer associated mutations in the native mtDNA were detected in the WGA amplified material and heteroplasmies in the native mtDNA were detected with high fidelity in the WGA material. In addition to the native mtDNA sequence present in the sample, 13 new heteroplasmies were detected in the WGA material.ConclusionGenetic screening of mtDNA amplified by WGA is applicable for the detection of cancer associated mutations. Our results show the feasibility of this method for: 1) increasing the amount of DNA available for analysis, 2) recovering the identical mtDNA sequence, 3) accurately detecting mtDNA point mutations associated with cancer.

Highlights

  • Whole genome amplification (WGA) methods allow diagnostic laboratories to overcome the common problem of insufficient DNA in patient specimens

  • To determine whether WGA altered the sequence of mitochondrial DNA (mtDNA), we compared mtDNA sequences in unamplified mtDNA and WGA mtDNA for both cancer and non-cancer samples

  • We evaluated the utility of Multiple Strand Displacement Whole Genome Amplification as a means of generating large quantities of mtDNA from total DNA without changing the mtDNA sequence due to amplification error or biasing amplification towards a subpopulation

Read more

Summary

Introduction

Whole genome amplification (WGA) methods allow diagnostic laboratories to overcome the common problem of insufficient DNA in patient specimens. Body fluid samples useful for cancer early detection are often difficult to amplify with traditional PCR methods In this first application of WGA on the entire human mitochondrial genome, we compared the accuracy of mitochondrial DNA (mtDNA) sequence analysis after WGA to that performed without genome amplification. A second commonly used method converts randomly fragmented gDNA into a library of DNA fragments of defined size; this library can be effectively amplified several thousand-fold using a high-fidelity DNA polymerase and can be re-amplified to achieve a final amplification of over a million fold without degradation of representation [14]. Both of these methods produce material suitable for downstream multiplex analyses [15,16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.