Abstract

In this article we study multiple steady states in ternary homogeneous azeotropic distillation. We show that in the case of infinite reflux and an infinite number of trays, multiple steady states exist when the distillate flow varies non-monotonically along the continuation path of the bifurcation diagram with the distillate flow as the bifurcation parameter. We derive a necessary and sufficient condition for the existence of these multiple steady states based on the geometry of the distillation region boundaries. We also locate in the composition triangle the feed compositions that lead to these multiple steady states. We show that the prediction of the existence of multiple steady states in the case of infinite reflux and an infinite number of trays has relevant implications for columns operating at finite reflux and with a finite number of trays. Using numerically constructed bifurcation diagrams for specific examples, we show that these multiplicities tend to vanish for small columns and/or for low reflux flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.