Abstract
Using a small-deformation expansion and numerical simulations we study stationary shapes of viscous drops in two-dimensional linear Stokes flows with nonzero vorticity. We show that high-viscosity drops in flows with vorticity magnitude β≪1 have two branches of stable stationary states. One branch corresponds to nearly spherical drops stabilized primarily by rotation, and the other to elongated drops stabilized primarily by capillary forces. For drop-to-continuous-phase viscosity ratios beyond a critical value λc, the rotationally stabilized solution exists in the absence of capillary stresses, because the rate of drop deformation (but not rotation) decreases with drop viscosity. We show that λc=10β−2, and the capillary stresses required for drop stability vanish at λc with exponent 1/2, as required by flow-reversal symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.