Abstract

To achieve ignition, inertial confinement fusion target designs use a sequence of shocks to compress the target before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of these shocks will be precisely set during a series of tuning experiments that adjust the laser pulse to achieve optimal conditions. We report measurements of the velocity and timing of multiple, converging shock waves inside spherical targets filled with liquid (cryogenic) deuterium. These experiments produced the highest reported shock velocity observed in liquid deuterium (Us = 135 km/s at ∼25 Mb) and observed an increase in shock velocity due to spherical convergence. These direct-drive experiments are best simulated when hydrodynamic codes use a nonlocal model for the transport of absorbed laser energy from the coronal plasma to the ablation surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call