Abstract
The problem of “finding best lines passing through a set of straight lines” has appeared in applications such as archaeological pottery analysis, precision manufacturing, and 3D modelling. In these applications, an instance of this problem is finding the symmetry axis of a symmetrical object from a set of its surface normal lines. We show that the mentioned instance of the problem may have two meaningful local minima, one of which is the symmetry axis, a fact that has been neglected in the literature. A multiple-solutions RANSAC algorithm is proposed for finding initial estimates of both local minima in the presence of outliers. Then, a coordinate-descent algorithm is presented that starts from these initial estimates and finds the local minima of the problem. The proposed coordinate-descent method does not involve any line search procedure, and its convergence is guaranteed. We also provide a proof for the rate of the convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.