Abstract
In this paper we study the following nonhomogeneous Kirchhoff equation −(a+b∫RN|∇u|2dx)Δu+V(x)u=f(x,u)+h(x),inRN, where f satisfies the Ambrosetti–Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland’s variational principle and the Mountain Pass Theorem in critical point theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.