Abstract

In this paper, we study a singular nonhomogenous biharmonic problem with Dirichlet boundary condition in Heisenberg group$ \begin{equation*} \left \{\begin{array}{ll} \Delta^2_{{\mathbb{H}^1}}u = \frac{f(\xi, u)}{\rho(\xi)^\beta}+\epsilon h(\xi)\ &\mbox{in} \ \Omega, \\ u = \frac{\partial u}{\partial \nu} = 0, \ \ &\mbox{on}\ \partial\Omega, \end{array} \right. \end{equation*} $where $ \Omega\subset {\mathbb{H}^1} $ is a bounded smooth domain, $ \Delta^2_{{\mathbb{H}^1}}u = \Delta_{\mathbb{H}^1}(\Delta_{\mathbb{H}^1}u) $ denotes the biharmonic operator in Heisenberg group $ \mathbb{H}^1 = \mathbb{C} \times \mathbb{R} $, $ 0\leq \beta < 4 $ with $ 4 $ is the homogeneous dimension of $ {\mathbb{H}^1} $ and $ f:\Omega \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function which satisfies subcritical and critical exponential growth condition, $ h(\xi)\in (D_0^{2, 2}(\Omega))^* $, $ h(\xi)\geq0 $ and $ h(\xi) \not\equiv0 $, $ \rho(\xi) = (|z|^4+t^2)^{\frac{1}{4}} $, $ \xi = (z, t)\in \mathbb{H}^1 $ with $ z = (x, y)\in\mathbb{R}^{2} $, $ \epsilon $ is a small positive parameter. We obtain the existence and multiplicity of solutions by the Ekeland variational principle, mountain pass theorem and singular Adams inequality in Heisenberg group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call