Abstract

We consider a parametric nonlinear equation driven by the Neumann $p$-Laplacian. Using variational methods we show that when the parameter $\lambda > \widehat{\lambda}_1$ (where $\widehat{\lambda}_1$ is the first nonzero eigenvalue of the negative Neumann $p$-Laplacian), then the problem has at least three nontrivial smooth solutions, two of constant sign (one positive and one negative) and the third nodal. In the semilinear case (i.e., $p=2$), using Morse theory and flow invariance argument, we show that the problem has three nodal solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.